
SEE3243/4243
Digital System

Week 1: Introduction

“Teacher only opens the door for you, you have to enter by yourself”
Old Chinese ProverbOld Chinese Proverb

Digital Systems

Why this course?y
This course is an extension to SEE 1223. It is about
digital logic design.
Both types of circuits (digital and analogue) are used in
practice, but digital circuits are much more prevalent
than analogue circuits Why?than analogue circuits. Why?
Analogue data is more precise than digital data because
digital data (discrete) is an approximation of analogue
data (continuous).
Digital systems are usually more accurate than analogue
systems because they are less vulnerable to noisesystems because they are less vulnerable to noise.

1-2

Digital Systems

Syllabusy
Topic Week

1. Introduction: Hierarchical design, CAD software. 1g ,
2. Logic simplification: SOP/POS logic, De-Morgan

Theorem, Entered-variable Karnaugh map, Introduction to
hazard & glitches.

1

3. Logic design using MSI components and PLD:
multiplexor, decoder, ROM, PLA, PAL, GAL, tristate,
introduction to FPGA & CPLD.

4 A i i i i h lf dd f ll dd i l

2

24. Arithmetic circuits: half-adder, full adder, ripple-carry
adder, subtractor, CLA adder, ALU, combinational
multiplier, Design Trade-off.

5 Sequential circuits: synchronous & asynchronous circuits

2

15. Sequential circuits: synchronous & asynchronous circuits,
latches & flip-flops, characteristic equations, metastability.

1

1-3

Digital Systems

Syllabus (cont’d)y ()
Topic Week

6. Registers & Counters: Registers File, shift registers, 1g g , g ,
counters, state diagrams, synthesis of synchronous counters.

7. Finite State Machines (FSM): State diagrams for FSM,
Moore & Mealy models, design of sequence detectors, state

2

encoding.
8. Advanced FSM Realization: Design of up/down counter

without and with enable. Design of vending machine.
i f ffi li h ll

2

Design of traffic light controller.
9. Case Studies: Datapath and control units 2

1-4

Digital Systems

Assessment and Mark Distribution
Quizzes – Best 5 of 6 x 7%
Assignments – 3 x 5%g
Final Exam – 50%
Quizzes and final examination will be standardized
among all five sections

1-5

Digital Systems

Book(s)()
Textbook:

Randy H. Katz and Gaetano Borriello, Contemporary Logic Design. 2nd
ed Upper Saddle River NJ: Pearson Education Inc 2006ed. Upper Saddle River, NJ: Pearson Education, Inc., 2006.

Other references
Donald D. Givone, Digital Principles and Design. International ed.
Singapore: McGraw Hill 2003Singapore: McGraw-Hill, 2003.
Stephen Brown and Zvonko Vranesic, Fundamentals of Digital Logic
with VHDL Design. 2nd ed. Singapore: McGraw-Hill, 2005.
Alan B Marcovitz Introduction to Logic Design 2nd ed New York NY:Alan B. Marcovitz, Introduction to Logic Design. 2nd ed. New York, NY:
McGraw-Hill, 2005.

1-6

Digital Systems

Misc – CAD skills
We will use Quartus II - won’t be taught in class.
Familiarize yourself with this EDA.
You have to learn it yourself. Tutorials will be given to assist you.
Lecture notes will be made available at UTM E-Learning Server
<http://elearning.utm.my>

1-7

Digital Systems

Major Topics To Be Discussedj p
Fundamental digital design skills (data types, Boolean
algebra, minimization techniques)
Combinational circuits (circuits without memory)
Introduction to arithmetic circuitry
Sequential circuits (circuits with memory)
Finite/Algorithmic State Machines. Some case studies.

1-8

Digital Systems

Assumptionsp
You’re all well versed in

Data and number representation and operations
Boolean algebra
Logic gates
Simple minimization techniques (up to 4-variable KarnaughSimple minimization techniques (up to 4 variable Karnaugh
maps)

All these topics you’d learnt in SEE 1223.

1-9

Digital Systems

What you can expecty p
Exercises, for you to do on your own
Usage of Quartus II CADg

1-10

Digital Systems

Hierarchical Designg
Definition: Hierarchy, or
“divide and conquer” .

System Specification
System Level
Design Flow

Dividing a module into sub-
modules and then repeating
this operation on the sub-

Functional
Architecture DesignBehavioural

Representation
this operation on the sub-
modules until the
complexity of the smaller

t b

Function Verification

Logic DesignL i (Gparts becomes
manageable.

Logic Design

Logic Verification

Logic (Gate
Level)

Representation

Implementation
(Gate/ Transistor/

Layout Level)

1-11

Layout Level)

Digital Systems

Top-down vs Bottom-upp p
Top-down design flow provides an excellent design
process control.
In reality, there is no truly unidirectional approach.
Both top-down and bottom-up approaches have to be
combined In system level design in order to fit thecombined. In system level design, in order to fit the
system into the allowable constraint (area, speed, power
consumption) some functions may have to be removed
and the design process must be repeated (may require
significant modifications).

1-12

Digital Systems

Development Processp
Required product

D i ifi tiDesign specifications

Initial design

Simulation

Design correct?

Redesign

No

Yes

Prototype implementation

Testing
Minor errors?

Make corrections

Yes

Yes

Meets specifications?

Fi i h d d t

Minor errors?
No

Yes

No

1-13

Finished product

Digital Systems

Design Flow for Logic Circuitsg g

Partition

Design concept
A

Design one block Design one block

B

C

Design interconnection between blocks

Functional simulation of complete system

Correct?

Physical mapping

No

Yes D

Timing simulation

Correct? No

1-14

Correct?

Implementation

Yes

Digital Systems

Concept of Regularity, Modularity and Localityp g y, y y
Regularity

Means that the hierarchical decomposition of a large system
must be simple and similar as much as possible. It must exists at
all levels of abstraction.
Eg: At the logic level, identical gate structures can be used, etc.
If the designer has a small library of well-defined and well-
characterized basic building blocks, a number of different
functions can be constructed by using this principle.

1-15

Digital Systems

Concept of Regularity, Modularity and Localityp g y, y y
Modularity

Hierarchical functional blocks must be well-defined –
f i li d i ffunctionality and interfaces.
Each block can be designed independently (relatively from each
other).
All of the blocks can be combined with ease to form the large
system.
Enables the parallelization of the design process.

1-16

Digital Systems

Concept of Regularity, Modularity and Localityp g y, y y
Locality

The well-characterized definition of interfaces for each module in
h h l l l lthe system stays at the local level.

Thus, the internals of each module become unimportant to the
exterior modules.
Connections are mostly between neighbouring modules,
avoiding long-distance connections as much as possible to avoid
interconnect delay. Time-critical operations should be performed
l lllocally.

1-17

Digital Systems

Where Are You Now?
Assumption: you know basics of logic theory, Boolean
algebra, Karnaugh map and stuffs from SEE 2222.
This is only for review. Get a book!
Lets take a sneak review…
Slides 1-19 to 1-35 are only for review. You can skip
these slides.

1-18

Digital Systems

Logic Gates: Revisitedg

Name Graphical
Symbol

Algebraic
Function

Truth Table

x
y f

0
0
1

0
1
0

0
0
0

x y f

y

AND f = x.y

1
1

0
1

0
1

x
y f

0
0

0
1

0
1

x y fOR f = x + y

y f
1
1

0
1

1
1

0 1

x fINVERTER f = x’
x f

1
1
0

x f
0
1

0
1

x fBUFFER f = x

1-19

1 1

Digital Systems

Logic Gates: Revisitedg
Name Graphical

Symbol
Algebraic
Function

Truth Table

NAND f = (x.y)’
x
y f

0
0
1

0
1
0

1
1
1

x y f

NOR f = (x + y)’
x
y f

1 1 0

0
0
1

0
1
0

1
0
0

x y f

EX-OR f = x’y + xy’
x
y f

1
1

0
1

0
0

0
0
1

0
1
0

0
1
1

x y f

EX-NOR f = x’y’ + xy
x
y f

1
1

0
1

1
0

0
0

0
1

1
0

x y f

1-20

y
1
1

0
1

0
1

Digital Systems

Boolean Expressionp
Boolean expressions are a much better form for representing digital
circuits because it is much easier to manipulate and simplify.
A B l i i i f d ithA Boolean expression is an expression formed with:

binary variables
the binary operators OR and AND
h NOTthe unary operator NOT
parentheses
an equal sign

For example,
F = x'y + z F is 1 when z = 1 OR when x = 0 AND y = 1.

1-21

Digital Systems

Operator Precedencep
The precedence of operations is as follows:

parentheses
NOTNOT
AND
OR

1-22

Digital Systems

Boolean Algebrag
Definition: Theorems that are used at design time to manipulate
and simplify Boolean expressions for easier and less expensive
implementationimplementation.
Any Boolean expression can be represented using only AND, OR,
and NOT operations.
M d t B l l b t h th f f B lMay need to use Boolean algebra to change the form of a Boolean
expression to better utilize the types of gates provided by the
component library being used.
A B l i bl h t l t i ll 1 d 0 (A Boolean variable, x, can have two values, typically 1 and 0 (on
and off)

1-23

Digital Systems

Properties of Boolean Algebrap g
Identity Elements

X+0=X
X 1 X (D l f i)

Distributive of ‘+ over •’
and ‘• over +’

X • 1=X (Dual of previous)
Commutative property

A+B=B+A

A+(B•C) = (A+B) • (A+C)
A• (B+C) = (A•B)+(A•C)

Existence of theA• B=B• A (Dual of previous)
Associative property

A + (B+C) = (A+B)+C

Existence of the
complement

A+A’ = 1
A• (B•C) = (A•B)•C A•A’ = 0

1-24

Digital Systems

Dualityy
Every Boolean expression has a dual
If the expression is valid, then the dual is valid
To obtain the dual:

Replace all + with · and all · with +
A+(BC) = (A+B)(A+C)
A(B+C) = AB+AC

Keep parenthesis order
Replace ‘1’ with ‘0’ and vice versaReplace 1 with 0 and vice versa

Duality can be used to prove theorems and allow simple
transformation of Boolean functions
Also makes it easy to find other forms of a theoremAlso makes it easy to find other forms of a theorem

1-25

Digital Systems

Variable Theorems
Idempotency

A+A = A

Absorption
A+AB = A
A(A’ B) ABA·A = A

Null elements for + and ·
operators

A(A’+B) = AB
AB+AB’ = A
(A+B)(A+B’) = A
AB AB’C AB ACoperators

A+1 = 1
A·0 = 0

Involution

AB+AB’C = AB+AC
(A+B)(A+B’+C) = (A+B)(A+C)

DeMorgan’sInvolution
(A’)’ = A

g
(A+B)’= A’·B’
(A·B)’= A’+B’

ConsensusConsensus
AB+A’C+BC=AB+A’C

1-26

Digital Systems

Some Definitions
Literal - a variable or complement of the variable in terms
Product term - single literal or product (·) of two or more literals,

e g : ABCe.g.: ABC
Sum term - single literal or sum (+) of two or more literals,

e.g.: A+B+C
minterm – normal product term of n literals that is 1 for exactly one set ofminterm normal product term of n literals that is 1 for exactly one set of
input values

– 2n unique n-variable minterms
– 4-variable minterm – A’B’C’D’, A’B’C’D …. ABDC (16 possible terms)

• maxterm – normal sum term of n literals , expression that is 0 for exactly
one set of input values
– 2n unique n-variable maxterms
– 4-variable maxterm – A+B+C+D A’+B’+C’+D’ (16 possible terms)4 variable maxterm A B C D, ….. A B C D (16 possible terms)

1-27

Digital Systems

Minterm – Maxterm relationshipp
Mi = mi’
Proof Decimal

Number
ABC Minterm Maxterm

At row 5,
m5 = AB’C
m ’= (AB’C)’

Number
0 000 A’B’C’=m0 A+B+C=M0

1 001 A’B’C=m1 A+B+C’=M1

2 010 A’BC’=m A+B’+C=Mm5 = (AB C)
= A’ + B + C’
= M5

2 010 A BC =m2 A+B +C=M2

3 011 A’BC=m3 A+B’+C’=M3

4 100 AB’C’=m4 A’+B+C=M4

5 101 AB’C=m5 A’+B+C’=M5

6 110 ABC’=m6 A’+B’+C=M6

7 111 ABC A’ B’ C’ M7 111 ABC=m7 A’+B’+C’=M7

1-28

Digital Systems

Forms of Boolean Expressionp
Complement

Use DeMorgan's theorem
DeMorgan's theorem states:

(X + Y)' = X' * Y'
DeMorgan's theorem can be extended to 3 or more variables.g
Example

Given (X + Y + Z)‘ Let A = Y + Z
(X + A)' = (X' * A')(X + A) (X A)
Substituting back in Y + Z
= (X' * (Y + Z)')
= X' * Y' * Z' X Y Z

1-29

Digital Systems

The compliment of a function can be obtained by interchanging
AND's and OR's and complementing each literal.
P th i d t b i l d d t k th d f thParenthesis may need to be included to keep the order of the
evaluation.
Remember, that in the absence of parenthesis, AND has

d OR tiprecedence over OR operation.

1-30

Digital Systems

Canonical SOP and POS
Canonical SOP Of A Function

a function represented as a sum of minterms
F(A,B,C) = A’BC’+ABC’+A’BC+ABC

Canonical POS Of A Function
a function represented as a product of maxtermsa function represented as a product of maxterms
F = (A+B’+C)(A+B’+C’)(A’+B+C’)

Any function can be represented as a canonical POS or
SOP form, which is either an two-level AND-OR tree or
a OR-AND tree

1-31

Digital Systems

Example
In SOP

x’y’z+ x’yz’+ x’yz+ xyz
Σ (1 2 3 7)

Row xyz Minterm Maxterm F

0 000 x’y’z’ x+y+z 0Σm(1,2,3,7)
In POS

(x+y+z) (x’+y+z) (x’+y+z’) (x’+y’+z)

0 000 x y z x y z 0

1 001 x’y’z x+y+z’ 1

2 010 x’yz’ x+y’+z 1
ΠM(0,4,5,6)

For the same function F
Σm(1,2,3,7)= ΠM(0,4,5,6)

3 011 x’yz x+y’+z’ 1

4 100 xy’z’ x’+y+z 0

5 101 xy’z x’+y+z’ 0

6 110 xyz’ x’+y’+z 0

7 111 xyz x’+y’+z’ 1

1-32

Digital Systems

Don’t Cares
Very often, the specification of a function is incomplete
Output state is unimportant for that particular set of inputs or input
t tstate never occurs

Any input combination whose state is unimportant is a “don’t care”
state (d in SOP and D in POS)
Useful feature for minimization of states
Example, with minterms AB’C (101) and ABC’(110) are don’t cares

Minterm – F(A,B,C) = Σm(0,1,2) + Σd(5,6)() () ()
Maxterm – F(A,B,C) = ΠM(3,4,7) . ΠD(5,6)

1-33

Digital Systems

Limitation of Boolean Algebrag
There is no algorithm you can follow that is guaranteed to lead to the
simplest form of the expression
Gi i t di t lt th i t t ll if it i i f t thGiven any intermediate result there is no way to tell if it is in fact the
simplest form of the expression

1-34

Digital Systems

DIY Example
Given the following SOP expression, minimize it:

F(x,y,z) = x’y’z’ + x’y’z + xy’z’ + xy’z + xyz’

Minimization via the application of Boolean algebra is error prone,
especially if there are large equations.

1-35

